I noticed a paper on the arXiv today with exactly this title (well, except that I removed the superfluous capitalisation of words), that is due to be published in the Astrophysical Journal. The abstract of the paper says:
Now, technical scientific papers are full of jargon and maybe the meaning of that paragraph isn't immediately clear to everyone (there's an accompanying Youtube video purporting to explain the content of the paper, but I didn't think it quite achieved that aim!). But I think this result is really quite interesting and probably important in a broader cosmological sense.In the single-degenerate (SD) channel of a Type Ia supernovae (SN Ia) explosion, a main-sequence (MS) donor star survives the explosion but it is stripped of mass and shock heated. An essentially unavoidable consequence of mass loss during the explosion is that the companion must have an overextended envelope after the explosion. While this has been noted previously, it has not been strongly emphasized as an inevitable consequence. We calculate the future evolution of the companion by injecting $2$-$6\times10^{47}$ ergs into the stellar evolution model of a $1\,M_\odot$ donor star based on the post-explosion progenitors seen in simulations. We find that, due to the Kelvin-Helmholtz collapse of the envelope, the companion must become significantly more luminous ($10$-$10^3\, L_\odot$) for a long period of time ($10^3$-$10^4$ years). The lack of such a luminous "leftover" star in the LMC supernova remnant SNR 0609-67.5 provides another piece of evidence against the SD scenario. We also show that none of the stars proposed as the survivors of the Tycho supernova, including Tycho G, could plausibly be the donor star. Additionally, luminous donors closer than $\sim10$ Mpc should be observable with the Hubble Space Telescope starting $\sim2$ years post-peak. Such systems include SN 1937C, SN 1972E, SN 1986G, and SN 2011fe. Thus, the SD channel is already ruled out for at least two nearby SNe Ia and can be easily tested for a number of additional ones. We also discuss similar implications for the companions of core-collapse SNe.