At 10 am CET on Thursday morning, the
Planck mission will hold a press conference and announce the first cosmology results based on data from their satellite, which has now been in orbit for nearly 1406 days, according to the little clock on their website. (I think the conference information will be available live
here, though the website's not as clear as it could be.)
Planck is an incredible instrument, which has been measuring the pattern of cosmic microwave background (CMB) temperature anisotropies with great precision. And the CMB itself is an incredible treasure trove of information about the history of the universe, telling us not only about how it began, but what it consists of, and what might happen to it in the future. When the COBE and WMAP satellites first published detailed data from measurements of the CMB, the result was basically a revolution in cosmology and our understanding of the universe we live in. Planck will provide a great improvement in sensitivity over WMAP, which in turn was a great improvement on everything that came before it.
Another feature of the Planck mission has been the great secrecy with which they have guarded their results. The members of the mission themselves have known most of their results for some time now. Apparently on the morning of March 21st they will release a cache of something like 20 to 30 scientific papers detailing their findings, but so far nobody outside the Planck team itself has much of an idea what will be in them.
So let's have a little guessing game. What do you think they will announce? Dramatic new results, or a mere confirmation of WMAP results and nothing else? I'll list below some of the things they
might announce and how likely I think they are (I have no inside information about what they actually have seen). Add your own suggestions via the comments box!
Tensors: Planck is much more sensitive to a primordial tensor perturbation spectrum than the best current limits. If they did see a non-zero tensor-to-scalar ratio, indicative of primordial gravitational waves, this would be pretty big news, because it is a clear smoking gun signal for the theory of inflation. Of course there are other bits of evidence that make us think that inflation probably did happen, but this really would nail it.
Unfortunately, I think it is unlikely that they will see any tensor signal – not least because many (and some would argue the most natural) inflation models predict it should be too small for Planck's sensitivity.
Number of relativistic species: CMB measurements can place constraints on the number of relativistic species in the early universe, usually parameterised as the effective number of neutrino species. I wrote about this a bit
here. The current best fit value is $N_{\rm eff}=3.28\pm0.40$ according to
an analysis of the latest WMAP, ACT and SPT data combined with measurements of baryon acoustic oscillations and the Hubble parameter (though some other people find a slightly larger number).
I would be very surprised indeed if Planck did not confirm the basic compatibility of the data with the Standard Model value $N_{\rm eff}=3.04$. It will help to resolve the slight differences between the ACT and SPT results and the error bars will probably shrink, but I wouldn't bet on any dramatic results.
Non-Gaussianity: One thing that all theorists would love to hear is that Planck has found strong evidence for non-zero non-Gaussianity of the primordial perturbations. At a stroke this would rule out a large class of models of inflation (and there are far too many models of inflation to choose between), meaning we would have to somehow incorporate non-minimal kinetic terms, multiple scalar fields or complicated violations of slow-roll dynamics during inflation. Not that there is a shortage of these sorts of models either …
Current WMAP and large-scale structure data sort of weakly favour a positive value of the non-Gaussianity parameter $f_{\rm NL}^{\rm local}$ that is larger than the sensitivity claimed for Planck before its launch. So if it lives up to that sensitivity billing we might be in luck. On the other hand, my guess (based on not very much) is it's more likely that they will report a detection of the orthogonal form, $f_{\rm NL}^{\rm ortho}$, which is more difficult – but not impossible – to explain from inflationary models. Let's see.
Neutrino mass: The CMB power spectrum is sensitive to the total mass of all neutrino species, $\Sigma m_\nu$, through a number of different effects. Massive neutrinos form (hot) dark matter, contributing to the total mass density of the universe and affecting the distance scale to the last-scattering surface. They also increase the sound horizon distance at decoupling and increase the early ISW effect by altering the epoch of matter-radiation equality.
WMAP claim a current upper bound of $$\Sigma m_\nu<0.44\;{\rm eV}$$ at 95% confidence from the CMB and baryon acoustic oscillations and the Hubble parameter value. But a more recent SPT analysis suggests that WMAP and SPT data alone give weak indications of a non-zero value, so it is possible that Planck could place a lower bound on $\Sigma m_\nu$. This would be cool from an observational point of view, but it's not really "new" physics, since we know that neutrinos have mass.
Running of the spectral index: Purely based on extrapolating from WMAP results, I expect Planck will find some evidence for non-zero running of the spectral index. But given the difficulty in explaining such a value in most inflationary models, I also expect the community will continue to ignore this, especially since the vanilla model with no running will probably still provide an acceptable fit to the data.
Anything else? Speculate away … we'll find out on Thursday!